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A B S T R A C T   

Alzheimer’s disease (AD) is a neurodegenerative disease that afflicts millions of people worldwide. Early 
detection of AD is critical, as drug trials show a promising advantage to those patients with early diagnoses. In 
this study, magnetic resonance imaging (MRI) datasets from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and The Open Access Series of Imaging Studies are used. Our method for performing the classification of 
AD is to combine a set of shearlet-based descriptors with deep features. A major challenge in classifying such MRI 
datasets is the high dimensionality of feature vectors because of the large number of slices of each MRI sample. 
Given the volumetric nature of the MRI data, we propose using the 3D shearlet transform (3D-ST), but we obtain 
the average of all directionalities, which reduces the dimensionality. On the other hand, we propose to leverage 
the capabilities of convolutional neural networks (CNN) to learn feature maps from stacked MRI slices, which 
generate a very compact feature vector for each MRI sample. The 3D-ST and CNN feature vectors are combined 
for the classification of AD. After the concatenation of the feature vectors, they are used to train a classifier. 
Alternatively, a custom CNN model is utilized, in which the descriptors are further processed end to end to obtain 
the classification model. Our experimental results show that the fusion of shearlet-based descriptors and deep 
features improves classification performance, especially on the ADNI dataset.   

1. Introduction 

An age-related pathological condition that can be captured by 
magnetic resonance imaging (MRI) is Alzheimer’s disease (AD), which 
afflicts millions of people around the world [1]. A consequence of this 
disease is the diminished quality of life for people who are afflicted [2]. 
AD can be confirmed through a postmortem (i.e., examining the brain 
after death) [3], yet advancements in radiology technologies, e.g, MRI 
and positron emission tomography, allow the identification of suscep-
tibility to AD. Since MRI is noninvasive and less expensive [4] than other 
radiology modalities, it is extensively used. Thus, MRI scans have 
become an appealing approach for the early detection of AD and for 
observing the progression of the disease [5]. 

MRI samples in digital form allow for building computer-assisted 
diagnosis (CAD) systems. Given that an MRI sample includes an 

abundant amount of information, computational techniques that use 
machine learning (ML), coupled with image processing, can be exploited 
to create CAD systems [6]. Such CAD systems can be critical for AD 
identification and potentially lead to a proper course of treatment. Ac-
cording to the kind of descriptors that are extracted from the MRI 
samples, the methods for AD classification can be categorized into 
traditional ML and deep-learning (DL) techniques [7,8]. In traditional 
ML, robust descriptors have been hand-engineered for the automatic 
identification of AD [9,10]. On the other hand, a DL model, particularly 
a convolutional neural network (CNN), can be trained end to end. 

A significant challenge is to obtain an early and accurate identifi-
cation of AD; hence, a robust detection approach can assist medical 
experts in administering a proper course of treatment to slow the pro-
gression of the disease. The prediction of stable mild cognitive impair-
ment (MCI) or MCI progressing to AD is an open issue [11]. Therefore, 

* Corresponding author. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada. 
E-mail addresses: salin025@uottawa.ca (S. Alinsaif), jlang@uottawa.ca (J. Lang).   

1 The data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 
investigators within the ADNI contributed both to the design and the implementation of ADNI and provided data, but did not participate in the analysis or the writing 
of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List. 
pdf. 

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.104879 
Received 4 April 2021; Received in revised form 15 September 2021; Accepted 15 September 2021   

mailto:salin025@uottawa.ca
mailto:jlang@uottawa.ca
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104879
https://doi.org/10.1016/j.compbiomed.2021.104879
https://doi.org/10.1016/j.compbiomed.2021.104879
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104879&domain=pdf


Computers in Biology and Medicine 138 (2021) 104879

2

the goal of this study is to propose a robust classification model. Our 
design is based on the combination of handcrafted descriptors in the 3D 
shearlet domain and deep features for AD classification. 

In the following, we provide a literature review of AD classification 
techniques and outline our contributions in this work. 

1.1. Related work 

A significant application area of ML in biomedical image classifica-
tion is MRI data classification [6]; in particular, the early diagnosis of 
AD from MRI data. In-depth reviews of existing techniques for AD are 
provided by Tanveer et al. [7] and Ebrahimighahnavieh et al. [8]. Ac-
cording to Ebrahimighahnavieh et al., MRI data for AD classification can 
be handled in one of the following ways: voxel-based methods, 
sliced-based methods, region of interest (ROI)-based methods, or 
patch-based methods. However, we divide our review of such CAD 
techniques for AD classification into two categories: traditional ML- and 
DL-based techniques. 

1.1.1. Traditional ML-Based techniques 
Traditional ML techniques aim at developing a pipeline starting with 

feature extraction (e.g., shape, color, texture, etc.) and feature selection, 
and then, effective classification based on these features. Various studies 
proposed sliced-based techniques from which informative knowledge is 
extracted. For example, Altaf et al. [12] proposed to combine both 
texture-based features and clinical data for AD classification. The bag of 
visual word techniques was utilized with a gray level co-occurrence 
matrix (GLCM), scale-invariant feature transform, local binary pattern 
(LBP), and a histogram of gradients. The texture-based features were 
extracted either from the whole image or segmented regions (i.e., gray 
matter, white matter, and cerebrospinal fluid). However, when the 
GLCM was obtained, four texture descriptors were computed for 
contrast, correlation, homogeneity, and entropy. Only a subset of slices 
was normally used, but if all slices were used, then the feature vectors 
were averaged. 

Other studies compute features from slices and/or voxels. For 
example, Nanni et al. [9] proposed the fusion of texture-based and 
voxel-based features to train a support vector machine (SVM) classifier. 
Alternatively, Faturrahman et al. [13] proposed using gray matter maps 
to extract 1) mean and standard deviation of voxel values and 2) seg-
mentation values of the voxel location. Such attributes were used to 
train a deep belief network. 

In addition, Salvatore et al. [10] proposed training an SVM based on 
feature extraction and reduction of MRI samples using descriptors from 
principal component analysis (PCA). PCA descriptors were then sorted 
in a descending order based on their Fisher Discriminant Ratio (FDR) 
scores. 

Other studies proposed to extract information from ROI. For 
example, Lee et al. [14] proposed using GLCM, but instead of applying 
this texture-based technique on the spatial domain slices, the authors 
computed the GLCM from the voxel pairing. Such attributes were 
computed from different regions of MRI scans, i.e., the hippocampus, 
precuneus, and posterior cingulate cortex. 

Some studies proposed to use spectral methods with the MRI data for 
multi-scale and different orientation analysis. For instance, Jha et al. 
[15] proposed using a dual-tree complex wavelet transform (DTCWT) to 
transform each slice of an MRI. These wavelet coefficients were reduced 
using PCA. Finally, a feed-forward neural network was used to classify 
AD from cognitively normal (CN) samples. Similarly, Feng et al. [16] 
proposed using Daubechies wavelet transformation for each scan of an 
MRI sample. From the directional sub-bands, energy regions of interest 
were obtained to compute the energy descriptors, which were then fed 
to the nearest neighbor classifier for AD classification. 

The shearlet transform, which is a truly anisotropic form of a 
wavelet, has been previously used for texture analysis in medical im-
ages. For instance, Zhou et al. [17] used the shearlet transform for the 

classification of breast tumor ultrasound images. As well, He et al. [18], 
Dong et al. [19], and Meshkini and Ghassemian [20] used the shearlet 
transform to construct feature representations for the classification of 
textured images. More specifically, Acharya et al. [21] proposed using 
the 2D shearlet transform from which features were extracted, and these 
features were fed to a nearest neighbor classifier for AD classification. 

Spectral transformations have been used to analyze MRI data before, 
but only using a 2D transformations. Unlike Jha et al. [15], Feng et al. 
[16], and Acharya et al. [21], we propose to use the 3D shearlet trans-
form (3D-ST) to study the MRI datasets. Similar to Altaf et al. [12], we 
also propose to utilize textural features. However, unlike Altaf et al., our 
textural features are computed from the 3D shearlet coefficients. 

1.1.2. DL-based techniques 
Unlike traditional ML techniques, DL is utilized to handle the 

complexity of MRI data using 2D and 3D DL models. For example, a 
sliced-based DL model was proposed by Jain et al. [22]. Jain et al. 
fine-tuned a pretrained VGG-16, where each MRI slice was considered as 
an input to the model. Each MRI sample was preprocessed, where a 
subset of slices was selected based on image entropy. Similarly, Hon and 
Khan [23] fine-tuned VGG-16 and Inception V4 models while using only 
a subset of slices that were selected based on image entropy. Each slice of 
an MRI was considered for AD classification as an independent, labeled 
example. Yagis et al. [24] also fine-tuned VGG-16 and ResNet-50 while 
using the same data samples that were used by Hon and Khan. Yagis 
et al. fine-tuned only the last three layers, and other layers were frozen. 

The split of slices is often done randomly, where slices from the same 
patient can appear in both the training and the testing datasets. Argu-
ably, subject-based splitting, where slices of a patient can only appear in 
either the training or testing split is more appropriate. Yagis et al. 
concluded that subject-based splitting, i.e., where slices of an MRI 
sample can appear either in the testing or training set exclusively, makes 
it more difficult to obtain high accuracy. 

Instead of fine-tuning a DL model, Wang et al. [25] proposed training 
a shallow network of an 8-layer CNN with data augmentation. Prior to 
training the model, MRI scans were preprocessed for spatial normali-
zation, smoothing, slice selection, and histogram stretching. Similarly, 
Abrol et al. [26] proposed training a ResNet model first to predict MCI 
subjects only. Afterwards, this model was fine-tuned to predict AD vs. 
CN samples. Lian et al. [27] proposed a patch-based hierarchical con-
volutional network, where various data augmentation techniques were 
applied, i.e., random flipping, distorting, and shifting. 

Similar to Lian et al., Mendoza et al. [28] proposed a patch-based 
approach, but utilizing an autoencoder classification model. This 
autoencoder was trained on a single 2D slice, and three independent 
views were explored: axial, coronal, and sagittal anatomical planes. The 
final label of a 2D slice was obtained using a majority voting rule from 
the ensemble of patch classifications. As well, Pan et al. [29] proposed 
training a SENet (Squeeze-and-Excitation Network) with data augmen-
tation while utilizing different views, i.e., sagittal, coronal, or transverse 
MRI slices. As such, a varying number of CNN models were trained on 
the aforementioned different views. Then, based on the particular binary 
classification task, the outputs of these various CNNs were ensembled. 

Cao et al. [30] proposed first computing the gray matter images from 
the MRI data. Only a subset from such images was selected based on 
image entropy. Further, the authors proposed a DL framework that had 
two pipelines. In the first pipeline, the images were processed in 2D, and 
the other pipeline processed the images in 3D. Then, the feature maps 
from both pipelines were fed into a SoftMax layer. 

In this study, our proposed pipeline in the context of DL is similar to 
Jain et al. [22] and Yagis et al. [24]. However, we propose to adjust a DL 
model to learn deep features from stacked MRI slices instead of using 
each slice as an independent example. In this manner, we avoid the 
“information leakage” issue discussed by Yagis et al. Unlike Wang et al. 
[25], we do not apply any data augmentation while fine-tuning a pre-
trained CNN model. Similar to Cao et al. [30], we propose to combine 
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different types of features. Our classification model is based on a com-
bination of shearlet-based descriptors with deep features. 

1.2. Contributions 

Many computational techniques have been developed for the iden-
tification of AD patients using traditional and DL approaches. In this 
paper, we propose to investigate the combination of the 3D-ST and DL 
for the classification of AD. Unlike earlier studies that have proposed the 
use of texture-based techniques [12,14], our handcrafted technique is 
based on the 3D-ST. The 3D-ST considers all slices while transforming 
the volumetric MRI sample and is expected to better capture volumetric 
features. GLCM texture descriptors [31,32], LBP [33], local oriented 
statistics information booster (LOSIB) [34], and segmentation-based 
fractal texture analysis (SFTA) [35] are utilized to summarize the 3D 
shearlet coefficients [36]. Such textural features are suffcient to classify 
the MRI data with an SVM [37] or a decision tree bagger (DTB) [38]. Our 
starting point in the context of DL is a pretrained CNN that is used for 
weight initialization. We adopt a 2D stacked MRI slices approach to be 
able to fine-tune a CNN model that is adjusted to fit the MRI data di-
mensions. We investigate four fine-tuned DL models as a feature 
extractor to train a traditional ML model. Our major contribution is a 
robust classification model that combines both shearlet-based de-
scriptors and deep features. Two strategies are investigated for training a 
classification model after concatenating the feature vectors. In one 
strategy, the concatenated descriptors are fed to a traditional ML model; 
in the other, a custom CNN model is used, which further processes the 
attributes and then obtains the classification. 

The summary of our main contributions are:  

● We propose a combined feature representation of shearlet-based 
descriptors and deep features for the classification of AD.  

● To the best of our knowledge, we are the first to apply the 3D shearlet 
transform for AD classification based on MRI data.  

● Our shallow CNN model combines shearlet-based descriptors with 
deep features and demonstrates competitive classification results on 
two AD datasets: the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and The Open Access Series of Imaging Studies (OASIS).  

● We demonstrate the generalization of a classification model to other 
time-points in the ADNI repository. 

2. Proposed system 

The proposed system consists of two pipelines. In the first pipeline of 
our work, an MRI sample is first preprocessed and then transformed 
using the 3D shearlet, and after that, the coefficients of the shearlet 
transform are summarized using various texture-based methods. These 
methods are GLCM, LBP, LOSIB, and SFTA. In this study, two different 
datasets (ADNI and OASIS) are utilized. Prior to transforming the ADNI 
dataset, each MRI sample is preprocessed using CAT12 [39]. The 
following pre-processing techniques are applied: skull-stripping, image 
normalization, and cropping (as shown in Fig. 2). However, when the 
OASIS dataset is used, only cropping is applied, since skull removal and 
intensity correction were applied by the data provider [40]. 

In the second pipeline, a variable number of CNN models are fine- 
tuned based on the MRI samples, and then those fine-tuned models 
are used as feature extractors. Unlike the shearlet-based approach, the 
MRI volumes are not preprocessed. The CNN model, rather, has full 
control to learn relevant features. Furthermore, Rajinikanth et al. [41] 
demonstrated that using an SVM classifier rather than a SoftMax layer 
can boost the classification performance. Therefore, in our study, 
instead of using SoftMax, each set of deep features is fed to another 

classifier, either SVM or DTB. 
Finally, we investigate concatenating our proposed descriptors in 

two different ways: 1) shearlet-based and deep features are concate-
nated and classified, or 2) shearlet-based descriptors and deep features 
are combined using a custom CNN model. Each component of our system 
is described next. 

2.1. Shearlet-based descriptors for AD classification 

The wavelet transform has shortcomings in dealing with multidi-
mensional data, such as MRI data or videos, but it can work efficiently 
with approximating a 1D signal. Multidimensional data, in general, are 
governed by curvilinear singularities, i.e., anisotropic features. Typical 
wavelet transforms are not capable of effectively localizing or detecting 
such anisotropic features. Subsequently, the shearlet transform, which is 
multi-scale and multidirectional, has been proposed to overcome such 
limitations [36]. Typical wavelets use isotropic scaling, which is not 
efficient for non-isotropic features. However, one of the aspects of the 
shearlet transform is its ability to capture anisotropic features. Parabolic 
scaling is used to control the length and width of the anisotropic element 
to capture the orientation, but a translation lattice is used to capture the 
location of discontinuities. 

Given that we are dealing with volumetric data in our study, each 
volume of the MRI sample is transformed using the 3D-ST. The 3D-ST 
[36,42] is an extension of the 2D shearlet transform. Hence, the 3D 
shearlet coefficients are also obtained using parabolic scaling, shearing, 
and translation, forming an affine system as in the 2D domain. Similar to 
the 2D domain, a “cone-adapted variant” in the 3D domain is used. This 
variant is called a pyramid-adapted shearlet system. Such systems treat 
directions in a uniform scheme as in the cone-adapted 2D shearlet 
transform. These pyramid-adapted discrete shearlet systems can be 
generated by the aforementioned affine system. 

Comparable to the cone-adapted 2D shearlet transform, the 3D-ST 
partitions the Fourier domain into a rectangular central area and six 
pyramids. Such partitioning in the frequency domain will generate well- 
localized directional filter banks that tile the complete frequency space. 
Therefore, those well-localized waveforms raise the ability of the 3D-ST 
to handle the complex geometric discontinuities and potentially can lead 
to generating enhanced descriptors for MRI data classification. For a 
further description of the shearlet transform and its mathematical rep-
resentation, readers are referred to Refs. [36,42]. 

2.1.1. 3D shearlet application to MRI data 
ShearLab [36] is used in our application of 3D shearlets. An MRI 

sample of size h × w × c is decomposed with S scales and K orientations 
per scale. The dimension of the three-dimensional filters is h × w × z, 
which is used for convolution with the input MRI sample. This setting 
generates a structure of size h × w × c × z, where h, w, c, and z represent 
the height, width, number of slices, and number of filters, respectively. 

Having the shearlet magnitude coefficients of each slice with various 
orientations, z, the average presence of these coefficients across this 
channel is obtained; hence, the cth slice is represented by only one 
averaged shearlet sub-band (i.e., h × w × c × 1). Such an aggressive 
reduction of shearlet coefficients is necessary; otherwise, a very large 
number of descriptors per slice is produced while computing textural 
features from every directional sub-band. Concatenating all descriptors 
of all slices to form the feature vector of an MRI sample will lead to a 
very large number of descriptors. With a very large number of de-
scriptors and a low number of training samples, the classification per-
formance will suffer from overfitting; hence, it will lead to low 
classification results on the testing samples. 
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2.1.2. Texture-based descriptors in the 3D shearlet domain 
In previous work [43,44], we developed texture features in the 2D 

shearlet domain. These texture features were based on GLCM textural 
features [32], LBP [33], LOSIB [34], or SFTA [35]. Each one of the four 
texture-based techniques is also applied in this study, but independently. 
Given that an MRI slice is represented by only one averaged shearlet 
sub-band, a set of descriptors, g, for this cth slice is computed as one 
vector, Gc = (g1, g2, …, gj), where j represents the number of descriptors. 
The final feature vector, E, for an MRI sample can be denoted as E = (G1, 
G2, …, Gq), where q represents the number of slices of an MRI sample. 

The texture-based methods are applied on the averaged shearlet sub- 
band that has dimension of h × w, which allows the applicability of such 
methods for the 3D shearlet coefficients. Next, a brief description of each 
texture method is provided. 

2.1.2.1. Gray-level Co-occurrence matrix (GLCM). The concept of GLCM 
is owed to Haralick et al. [32]. Other studies [31,45] proposed further 
statistics that can be extracted from the GLCM. Denote a and b to be two 
specific coefficients that are separated by a distance, D, then an image 
content can be summarized with a relative frequencies matrix, Fab. To 
compute the GLCM, the orientation or the distance to obtain the relative 
frequencies matrix can be adjusted. Hence, the GLCM contains relative 
frequencies of neighboring pixels for quantized orientation and distance. 
Thus, the value of D can be adjusted to reflect either local or global 
relative frequencies of coefficients. 

In this study, for a given averaged shearlet sub-band, the orientation 
is changed to = (0◦, 45◦, 90◦, and 135◦) for a given D. Thus, four GLCMs 
are obtained, but we calculate the mean of the four GLCMs from which 
rotation invariant statistics [46] are computed. Next, from this averaged 
GLCM, the following 20 textural features are obtained: contrast, corre-
lation, energy, autocorrelation, cluster prominence, cluster shade, 
dissimilarity, entropy, homogeneity, maximum probability, sum of 
squares, variance, sum average, sum variance, sum entropy, difference 
variance, difference entropy, information measure of correlation, in-
verse difference normalized, and inverse difference moment normalized. 

2.1.2.2. Local binary pattern (LBP). The textural features that are 
computed from the LBP [33] method are rotationally invariant of the 
local occurrence of an image. 

In our study, LBP textural features are computed from each averaged 
shearlet sub-band that represents an MRI slice. For a given shearlet (SH) 
coefficient at the position (u, v), the LBP of the SH coefficient is calcu-
lated as follows: 

LBPP,R =
∑P− 1

p=0
s(SHp − SHl)2p, s(x) =

{
1, x⩾0.
0, x < 0. (1)  

SHl and SHp denote the central magnitude coefficients, and P denotes the 
neighboring magnitude coefficients in the circular neighborhood. 

2.1.2.3. Local oriented statistic information booster (LOSIB). The first 
step of the LOSIB [34] method is to obtain the absolute difference dp. 
The absolute difference is computed for every central shearlet coeffi-
cient, l, with P surrounding coefficients, in the following manner: 
dp(ul, vl) = |SHl − SHp| where p ∈ 0, 1, …, (P − 1). 

Next, the average of the differences across the same orientation is 
calculated, in the following manner: 

μp =

∑M
xl=1

∑N
yl=1dp(xl, yl)

M⋅N
(2)  

N and M denote the height and width of an averaged shearlet sub-band, 

respectively. 

2.1.2.4. Segmentation-based fractal texture analysis (SFTA). The SFTA 
[35] technique decomposes an averaged shearlet sub-band into binary 
images using a two-threshold binary decompositions (TTBD). As such, 
the following features are calculated from the binary images: the 
dimension of the fractal boundaries, the average gray level, and the 
count of pixels belonging to the region. 

2.2. Fine-tuning pretrained CNN models for AD classification 

In this study, we examine pretrained models on nonmedical images, 
i.e., on ImageNet [47]. Four pretrained CNN architectures are fine-tuned 
for AD diagnosis, as described in this section. Then these pretrained CNN 
models are leveraged for their capability as feature extractors. 

2.2.1. Fine-tuning a pretrained model 
Sharma and Mehra [48] demonstrated that fine-tuning a pretrained 

model coupled with logistic regression as a classifier in the task of breast 
cancer histology image classification led to good classification perfor-
mance. In this study, we propose to use four pretrained CNN models in 
MATLAB® 2020b that can handle the complexity of MRI datasets: 
SqueezeNet-v1.1 [49], MobileNet-v2 [50], Xception [51], and 
Inception-v3 [52]. Sharma and Mehra [48] fine-tuned a pretrained 
model using histology images that have the same number of channels as 
the input layer of the pretrained model. In our case, the MRI sample 
consists of a different channel number as the slices are stacked in depth. 
Consequently, each adopted CNN model needs to be adjusted in the 
following manner:  

● The input layer needs to be changed to fit the dimensions of an MRI 
sample, i.e., h × w × c, where the number of channels of an MRI 
sample is c > 3. In the case of ADNI and OASIS datasets, an MRI 
sample has a dimension of 150 × 150 × 90 and 150 × 150 × 32, 
respectively. Since the input layer is pretrained on RGB images, the 
convolution layer which follows the input layer has a pretrained 
weights matrix with a channel size = 3. Therefore, this convolution 
layer must be replaced and trained from scratch while keeping the 
same number of filters as the pretrained model. As a result, a new 
weight tensor with an input depth that fits the channel size of the 
new input layer (90 or 32, respectively) is created.  

● The specialized layers prior to the classification layer, typically 
convolution and pooling layers or dense layers, are replaced and 
trained from scratch using new filter sizes to fit the size of the pre-
ceding feature maps. Finally, given a binary problem, our classifi-
cation layer, which is also trained from scratch, must have an output 
size of two. 

The remaining pretrained weights of a CNN model are used as weight 
initializers. 

2.2.2. CNN as feature extractor 
A pretrained deep model can be used to extract a feature vector per 

MRI slice, and then concatenate all feature vectors of all slices to form a 
single feature vector representing an MRI sample. Such a process would 
generate a very large number of descriptors per MRI sample. However, 
necessary changes are incorporated to a pretrained DL model for MRI 
classification, as described in the previous section. We make use of state- 
of-the-art deep networks to learn the deep features of a stacked MRI 
sample simultaneously. 

However, the selected feature maps in SqueezeNet-v1.1 is module 
“Fire9.” The mean of each feature map is computed, generating a feature 
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vector of size 1 × 1 × C, which is finally flattened to form the feature 
vector of an MRI sample. 

In MobileNet-v2, Xception, and Inception-v3, the output of the 
average pooling (Avg Pool) layer is utilized, which is the layer just prior 
to the classification layer. 

Thereafter, a standard classifier is trained in the context of nested 
cross-validation (see Section 3.3). We experiment with SVM and DTB as 
classifiers. 

2.3. Custom CNN 

Although the proposed 3D-ST approach does not make full use of the 
multiple scales and directionalities, it still uses averaged shearlets as a 
reduced form of the coefficients. This reduced averaged shearlet sub- 
band is used to obtain low-level image structures, e.g., utilizing SFTA, 
from which local and global statistics are computed. Alternatively, one 
can obtain high-level semantic deep features that are computed from 
different CNN models. We then investigate whether combining shearlet- 
based descriptors and deep features enhances the classification model, 
and if fusing such attributes provides a more discriminative and effective 
classifier. A typical and simple approach is to feed the new combined 
feature vector to a classifier. We will compare our method with this 
simple approach. 

Alternatively, our main idea is to feed and transform the combined 
feature vectors using a customized CNN model, as shown in Fig. 1. The 
building block of our custom CNN model consists of the following op-
erations: convolution (Conv), batch normalization, rectified linear unit 
(ReLU), and, finally, max pooling. For the convolution layers, a filter size 
of 7 is used for each convolution layer, but the number of filters is 8, 16, 
32, and 64, respectively. The convolution layer is similar to a feature 

extraction step in the traditional pipeline, but the parameters of this 
layer can be learned during back propagation. The filter size for the max- 
pooling layers is 1 with a stride of 2. A pooling layer is an important 
element of our CNN model for feature reduction and speeding up the 
training process. Furthermore, to avoid overfitting to a dataset while 
training our model, batch normalization is utilized. This building block 
is repeated four times and then followed by three fully connected layers 
that consist of 120 neurons and then one fully connected layer of 2 
neurons corresponding to a binary classification problem. 

Our custom CNN model is derived empirically, such that it can 
generalize on the validation data for the ADNI and OASIS datasets. 

3. Experiments 

3.1. Datasets 

3.1.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) data 
We use the same data samples as Salvatore et al. [53]. The data are 

archived and can be accessed from the ADNI data repository2. The 
dataset consists of 200 patients. The distribution of samples in this 
dataset is as follows: 50 patients with a stable diagnosis of CN during the 
24-month follow-up, 50 patients with a stable diagnosis of mild cogni-
tive impairment (sMCI), 50 patients with a stable diagnosis of AD, and 
50 patients with an MCI diagnosis that may progress to AD (pMCI). All 
patients had three serial MRI examinations at multiple points after the 
baseline: after 6, 12, and 24 months. However, since our target is to 
examine the capability of our techniques to distinguish Alzheimer’s 

Fig. 1. Custom 1D CNN model which is used to transform the combined shearlet-based descriptors with deep features. Dimensions in the figure correspond to Fusion 
#2 (See Section 4.3) descriptors computed from the OASIS dataset. Details about the activations and parameters are provided in Appendix B. 

Fig. 2. Examples of MRI slices before (top) and after (bottom) processing. Left to Right: CN, sMCI, AD, and pMCI, respectively.  

2 The ADNI data archive can be accessed via adni.loni.usc.edu. 
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patients from non-Alzheimer’s patients using MRI data, our focus in this 
study is on the baseline MRI scans of the patients. Examples of this 
dataset are shown in Fig. 2. 

We carry out the following classification task while using the ADNI 
dataset as did Salvatore et al.: (CN + sMCI) vs. (pMCI + AD)3. 

To evaluate the generalization of our proposed method, we retrieve a 
separate set of MRI data from the ADNI data repository. As such, 10 MRI 
volumes per category are retrieved (i.e., CN, sMCI, AD, and pMCI), but 
these MRI volumes are of different time-points (i.e., not necessarily of 
baseline scans). Such a dataset of new subjects is unseen during the 
training process from start to finish, and it will be used to test our pro-
posed method at the very end. 

3.1.2. The Open Access Series of Imaging Studies (OASIS) data 
To further examine our proposed techniques, we retrieve another set 

of cross-sectional MRI data from the OASIS data repository4 for AD 
classification [40]. Examples of AD and CN slices are shown in Fig. 3. In 
this study, we retrieve 100 samples each of CN and AD patients. We 
retrieve the same 200 subjects5 that were used by Hon and Khan [23]. 
However, 10 examples out of each of the 100 samples from each cate-
gory (i.e., CN and AD) are kept hidden from beginning to end. These 
hidden examples are then used at the very end to examine the gener-
alization of our proposed method. Hence, only 90 examples of each 

category are used to train and validate our proposed techniques. 
The OASIS data repository provides MRI scans as individual slices for 

a patient. However, we deal with the data as a volume for each patient’s 
slices by converting them into the Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) format. Again, a binary classification CN vs. AD is 
applied to this data. 

3.2. Classification algorithms 

Different classifiers were compared by Thanh and Kappas [54], who 
demonstrated that the highest classification results were obtained by an 
SVM model, which were then followed by decision trees. In this study, 
SVM [37], with radial basis function as a kernel, and DTB [55] are used 
as implemented in MATLAB® 2020b. In the case of SVM, in an attempt 
to choose the best value of the regularization parameter (C), trials of 
values between [1,5] with an increment of 1 are conducted. In the case 
of DTB, the number of grown trees in an ensemble are between [50, 750] 
with an increment of 50 trees. These hyperparameters are determined in 
the context of nested cross-validation. 

3.3. Nested cross-validation (CV) 

We utilize five-fold nested CV for hyperparameter optimization. 
While using a five-fold nested CV, the data is split into five subsets of 
equal sizes. Therefore, four out of five subsets are used for training and 
validation for hyperparameter optimization in an inner loop. The last 
subset is then used for testing the performance of a classifier in an outer 
loop. 

For each optimization round, the set of hyperparameters is tuned to 
maximize the geometric mean of the classifier in the inner loop. For each 
optimization round, the classification performance is estimated in the 
outer loop in terms of accuracy, sensitivity, specificity, and geometric 
mean. 

The number of samples that are used in our nested CV is as follows:  

● Given that the number of MRI volumes from the ADNI data is 200 (i. 
e., 100 CN + sMCI, and 100 pMCI + AD) for each round of the nested 
CV, the number of MRI samples that are used to train a classifier is 
128; the number of samples that are used in the inner loop for 
optimization is 32; the number of MRI samples that are used to test 
the performance in the outer loop is 40.  

● Given that the number of MRI volumes from the OASIS data is 180 (i. 
e., 90 CN and 90 AD) for each round of the nested CV, the number of 
MRI samples that are used to train a classifier is 115; the number of 
samples that are used in the inner loop for optimization is 29, except 
for one round, where a classifier is trained with 116 samples and 
validated with 28 samples. However, the number of samples that are 
used to test the performance in the outer loop is 36. 

We use five-fold nested CV, i.e., the above procedure is repeated five 
times, and then, across the five rounds, the average of common classi-
fication performance in the outer loop is reported. We use the following 
metrics:  

● Accuracy (ACC) is the ratio of correct classifications over total 
number of samples, or ACC = (TP + TN)/(TP + TN + FP + FN), where 
TP, TN, FP, and FN denote the number of true positives, true nega-
tives, false positives, and false negatives, respectively.  

● Sensitivity (Sen) is the ratio of true positives over actual positives, or 
Sen = TP/(TP + FN).  

● Specificity (SP) is the ratio of true negatives over actual negatives, or 
SP = TN/(TN + FP).  

● Geometric mean (GM) is the square root of the product of sensitivity 
and specificity, or GM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sen × SP

√
. 

Fig. 3. Examples of the OASIS MRI slices. CN on the left and AD on the right.  

Table 1 
ADNI classification performance using shearlet-based descriptors for (CN +
sMCI) vs. (pMCI + AD).  

Method ACC Sen SP GM 

GLCM SVM 0.6800 ±
0.0542 

0.6700 ±
0.1037 

0.6900 ±
0.0418 

0.6778 ±
0.0570  

DTB 0.6850 ±
0.0335 

0.7100 ±
0.0742 

0.6600 ±
0.0418 

0.6831 ±
0.0332 

LBP SVM 0.6700 ±
0.0570 

0.7000 ±
0.0791 

0.6400 ±
0.0822 

0.6674 ±
0.0571  

DTB 0.6300 ±
0.0671 

0.6300 ±
0.0758 

0.6300 ±
0.0908 

0.6284 ±
0.0678 

LOSIB SVM 0.6450 ±
0.0326 

0.6700 ±
0.0447 

0.6200 ±
0.0570 

0.6436 ±
0.0324  

DTB 0.6400 ±
0.0379 

0.6400 ±
0.0652 

0.6400 ±
0.0652 

0.6382 ±
0.0389 

SFTA SVM 0.7050 ± 
0.0447 

0.7300 ± 
0.1151 

0.6800 ±
0.0570 

0.7009 ± 
0.0458  

DTB 0.6750 ±
0.0433 

0.6300 ±
0.0837 

0.7200 ± 
0.0447 

0.6718 ±
0.0460 

Best performance is highlighted. 

3 More information about the dataset and patients IDs can be accessed at 
https://github.com/christiansalvatore/Salvatore-200Longitudinal.  

4 The OASIS data repository can be accessed via http://www.oasisbrains.org.  
5 More information about the patients can be found at: https://github. 

com/marciahon29/Ryerson_MRP. 
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In the following Section 4, we first discuss results classifying for AD 
while using shearlet-based descriptors alone, and report results while 
using two classifiers: SVM and DTB. Similarly, we report the perfor-
mance of the SVM and DTB classifiers when being trained based on the 
various deep features computed from different fine-tuned CNN archi-
tectures. Our classical ML classifiers are trained and validated in the 

context of nested CV. 
However, given the fact that training a DL model is time consuming, 

our custom CNN models are trained from scratch while using 80% of the 
data for training and 20% for validation. 

4. Results and analysis 

4.1. Classification results using shearlet-based descriptors 

In this section, results are reported when shearlet-based techniques 
are used for feature extraction. Each MRI sample in the ADNI dataset is 
transformed using the 3D shearlet with S = 2 and K = 49 orientations per 
scale. Since a fewer number of slices are available for the OASIS dataset, 
the number of scales is set to S = 2 and K = 13 per scale. As described in 
Section 2.1, the average of all directionalities of an MRI slice is 
computed. Our averaging strategy yields dramatically fewer descriptors. 
For example, if 20 textural features were computed while using the 

Table 2 
OASIS classification performance using shearlet-based descriptors for CN vs. AD  

Method ACC Sen SP GM 

GLCM SVM 0.6889 ± 
0.1028 

0.6444 ±
0.1394 

0.7333 ±
0.0724 

0.6860 ± 
0.1066  

DTB 0.6889 ± 
0.0602 

0.6333 ±
0.1152 

0.7444 ± 
0.0843 

0.6827 ±
0.0613 

LBP SVM 0.6889 ± 
0.0819 

0.6556 ±
0.1542 

0.7222 ±
0.0786 

0.6823 ±
0.0917  

DTB 0.6667 ±
0.0810 

0.6333 ±
0.1152 

0.7000 ±
0.0930 

0.6628 ±
0.0847 

LOSIB SVM 0.6556 ±
0.0421 

0.5889 ±
0.0843 

0.7222 ±
0.1039 

0.6479 ±
0.0380  

DTB 0.6278 ±
0.0824 

0.6444 ±
0.1152 

0.6111 ±
0.1179 

0.6229 ±
0.0850 

SFTA SVM 0.6222 ±
0.0505 

0.6444 ±
0.1009 

0.6000 ±
0.0724 

0.6185 ±
0.0506  

DTB 0.6444 ±
0.0819 

0.6667 ± 
0.1303 

0.6222 ±
0.0609 

0.6418 ±
0.0815 

Best performance is highlighted. 

Table 3 
ADNI classification performance using deep features for (CN + sMCI) vs. (pMCI 
+ AD).  

Method ACC Sen SP GM 

SqueezeNet SVM 0.8400 ±
0.0859 

0.8569 ±
0.0878 

0.8218 ±
0.1102 

0.8378 ±
0.0831  

DTB 0.8950 ±
0.0570 

0.8774 ±
0.0602 

0.9132 ±
0.0909 

0.8939 ±
0.0543 

MobileNet SVM 0.9050 ±
0.0411 

0.8948 ±
0.0898 

0.9063 ±
0.0628 

0.8987 ±
0.0443  

DTB 0.9100 ± 
0.0379 

0.9161 ± 
0.0649 

0.8964 ±
0.0563 

0.9052 ± 
0.0381 

Xception SVM 0.9000 ±
0.0586 

0.8744 ±
0.1016 

0.9217 ±
0.0645 

0.8963 ±
0.0659  

DTB 0.9050 ±
0.0737 

0.8839 ±
0.1124 

0.9241 ± 
0.0846 

0.9021 ±
0.0789 

Inception SVM 0.8650 ±
0.0652 

0.8861 ±
0.0779 

00.8410 ±
0.0572 

0.8631 ±
0.0656  

DTB 0.8800 ±
0.0818 

0.8839 ±
0.1018 

0.8727 ±
0.0822 

0.8776 ±
0.0848 

Best performance is highlighted. 

Table 4 
OASIS classification performance using deep features for CN vs. AD.  

Method ACC Sen SP GM 

SqueezeNet SVM 0.8944 ±
0.0497 

0.8603 ±
0.0492 

0.9313 ±
0.0714 

0.8942 ±
0.0422  

DTB 0.8833 ±
0.0534 

0.8637 ±
0.0899 

0.9146 ±
0.0885 

0.8861 ±
0.0480 

MobileNet SVM 0.9167 ±
0.0196 

0.9034 ±
0.0688 

0.9367 ±
0.0579 

0.9184 ±
0.0225  

DTB 0.9278 ± 
0.0248 

0.9146 ± 
0.0703 

0.9467 ± 
0.0542 

0.9291 ± 
0.0266 

Xception SVM 0.9000 ±
0.0541 

0.9034 ±
0.0688 

0.9035 ±
0.1113 

0.9010 ±
0.0562  

DTB 0.8889 ±
0.0481 

0.8909 ±
0.0500 

0.8929 ±
0.1169 

0.8894 ±
0.0513 

Inception SVM 0.8889 ±
0.0589 

0.9091 ±
0.0539 

0.8723 ±
0.1071 

0.8889 ±
0.0622  

DTB 0.9056 ±
0.0639 

0.8966 ±
0.0529 

0.9129 ±
0.1266 

0.9023 ±
0.0653 

Best performance is highlighted. 

Table 5 
The configurations of the texture-based methods.  

Dataset GLCM (D) LBP (R, P) LOSIB (R, P) SFTA (nt) 

ADNI D = 1 (2, 16) (5, 16) nt = 1 
OASIS D = 2 (3, 16) (3, 16) nt = 4 

Distance (D), radius (R), neighborhood (P), number of thresholds (nt). 

Table 6 
ADNI classification performance while combining shearlet-based descriptors 
with deep features for (CN + sMCI) vs. (pMCI + AD).  

Method ACC Sen SP GM 

(a): Combining shearlet-based descriptors with deep features to train/validate a 
classifier 

Fusion 
#1 

SVM 0.9050 ±
0.0274 

0.9100 ±
0.0418 

0.9000 ±
0.0500 

0.9044 ±
0.0276  

DTB 0.8750 ±
0.0306 

0.8900 ±
0.0418 

0.8600 ±
0.0548 

0.8742 ±
0.0311 

Fusion 
#2 

SVM 0.9350 ± 
0.0285 

0.9400 ± 
0.0418 

0.9300 ±
0.0447 

0.9345 ± 
0.0283  

DTB 0.8950 ±
0.0597 

0.9100 ±
0.0224 

0.8800 ±
0.1151 

0.8933 ±
0.0618 

(b): Combining shearlet-based descriptors with deep features to train/validate 
the custom CNN 

Fusion 
#1 

CNN 0.9000 0.8500 0.9500 0.8986 

Fusion 
#2 

CNN 0.9000 0.9000 0.9000 0.9000 

Best performance is highlighted. SVM and DTB classifiers are trained in the 
context of 5-fold nested CV, but CNN is trained while using 80%–20% for 
training and validation, respectively. 

Table 7 
Using unseen data samples of ADNI to test the generalization of our proposed 
techniques.  

Method ACC Sen SP GM 

(a): Combining shearlet-based descriptors with deep features to test the 
generalization of a classifier 

Fusion 
#2 

SVM 0.6450 ±
0.0371 

0.4800 ±
0.0671 

0.8100 ±
0.0418 

0.6221 ±
0.0425 

(b): Combining shearlet-based descriptors with deep features to test the 
generalization of the custom CNN 

Fusion 
#2 

CNN 0.7000 0.6000 0.8000 0.6928 

Best models are determined based on the highest geometric mean that is 
computed in Table 6. 
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GLCM technique for each of the 98 directionalities of the 3D shearlet 
sub-bands, we would end up having 1, 960 descriptors per slice. In total, 
90 (no. of slices) × 1, 960 = 176, 400 descriptors per MRI sample in the 
ADNI dataset. As a result, a problem of overfitting the model to the 
descriptors may arise due to a very large number of descriptors and the 
small number of training samples. 

The parameter setting of the texture-based techniques can be 
adjusted. Various parameters are tested for each texture-based tech-
nique to build a classification model. The hyperparameters that maxi-
mize the performance on the validation split of the dataset are selected. 
Therefore, the parameters used for the ADNI dataset are not necessarily 
the same as for the OASIS dataset. The results reported in this paper for 
the two datasets are based on the hyperparameters shown in Table 5. 

The performance of two classifiers, i.e., SVM and DTB, are reported 
in Table 1 for the ADNI dataset and Table 2 for the OASIS dataset based 
on five-fold nested CV. When using the ADNI dataset, the proposed 
descriptors extracted from the 3D shearlet coefficients can achieve 
reasonable accuracy between 68% and 70% when fed into an SVM or 
DTB classification model. We notice that the highest accuracy is 0.7050, 
obtained while classifying this dataset utilizing SFTA descriptors 
coupled with an SVM classifier with a corresponding sensitivity of 
0.7300, specificity of 0.6800, and geometric mean of 0.7009. 

Similarly, our 3D shearlet technique is applied to the OASIS dataset. 

On the OASIS dataset, our technique achieves accuracies between 62% 
and 68%. The highest obtained accuracy is 0.6889, obtained while 
classifying the dataset utilizing GLCM textural features coupled with an 
SVM classifier, with a corresponding sensitivity of 0.6444, a specificity 
of 0.7333, and a geometric mean of 0.6860. From Tables 1 and 2, per-
formance values of GLCM, LBP, and LOSIB textural features for both 
datasets are comparable. On the other hand, SFTA shows better per-
formance for the ADNI data samples. The reason for this may be the 
different number of slices in the ADNI and OASIS datasets, and, hence, 
the different number of descriptors computed by each method. 

4.2. Classification results using fine-tuned pretrained CNNs 

In this section, the ADNI and OASIS datasets are used to fine-tune a 
CNN model. In order to be able to fine-tune a CNN model based on an 
MRI volume, the model needs to be adjusted, as detailed in Section 2.2. 
To fine-tune a CNN model, the dataset used in this study is divided into 
80% for training and 20% for validation. The purpose of such a division 
is to select and monitor the hyperparameters and the model perfor-
mance. A momentum value of 0.9 and a small learning rate of 0.0001 are 
chosen, while utilizing stochastic gradient descent [56] for fine-tuning a 
model. Fine-tuned pretrained CNN models are trained for a maximum of 
60 epochs with mini-batches of size 10. In this study, various CNN 
models are re-trained: SqueezeNet, MobileNet, Xception, and Inception. 
After fine-tuning a model, each model is then used to generate a feature 
vector for each MRI volume. Those extracted feature vectors of each 
CNN model are used to train two classifiers, i.e., SVM and DTB, in the 
context of five-fold nested CV, as described in Section 3. 

Tables 3 and 4 show results of various CNN models when used as 
feature extractors after being fine-tuned using either the ADNI or the 
OASIS dataset. The baseline results for each CNN model for feature 
extraction are obtained without any fusion with shearlet-based de-
scriptors. An SVM or DTB classifier is used with only the deep features. 
We observe that for both datasets, using fine-tuned MobileNet deep 
features leads to the highest classification results. In particular, the 
highest performance is obtained when these deep features are used to 
train a DTB model in the five-fold nested CV fashion. 

4.3. Classification results while combining shearlet-based descriptors with 
deep features 

In the two previous sections, we provided a comprehensive exami-
nation of our shearlet-based descriptors and deep features. Each set of 
descriptors is used to train an SVM or DTB classifier. The underlying 
principle of each method differs in generating a meaningful set of de-
scriptors for an MRI sample, and that can influence the performance of 
the classifier. 

Thus, we propose to combine both handcrafted and deep features 
together. The following fusions are compared: 

● Fusion #1: All of our extracted handcrafted descriptors are aggre-
gated as one data matrix (X), then aggregated with all deep features 
(Y). This fusion is general to all MRI brain scans. Thus, the number of 
descriptors for an MRI sample in the ADNI dataset is [GLCM (1800) 
+ LBP (1620) + LOSIB (1440) + SFTA (270)] + [SqueezeNet (512) 
+ MobileNet (1280) + Xception (2048) + Inception (2048)] =
11018 descriptors; the number of descriptors for an MRI sample in 
the OASIS dataset is [GLCM (640) + LBP (576) + LOSIB (512) +
SFTA (672)] + [SqueezeNet (512) + MobileNet (1280) + Xception 
(2048) + Inception(2048)] = 8288 descriptors. 

Table 8 
OASIS classification performance while combining shearlet-based descriptors 
with deep features for CN vs. AD.  

Method ACC Sen SP GM 

(a): Combining shearlet-based descriptors with deep features to train/validate a 
classifier 

Fusion 
#1 

SVM 0.8944 ±
0.0412 

0.9000 ±
0.0724 

0.8889 ±
0.0878 

0.8922 ±
0.0422  

DTB 0.9000 ±
0.0421 

0.9000 ±
0.0724 

0.9000 ±
0.0824 

0.8981 ±
0.0424 

Fusion 
#2 

SVM 0.9278 ±
0.0541 

0.9111 ±
0.0497 

0.9444 ± 
0.0680 

0.9274 ±
0.0539  

DTB 0.8944 ±
0.0692 

0.8889 ±
0.0680 

0.9000 ±
0.0724 

0.8944 ±
0.0691 

(b): Combining shearlet-based descriptors with deep features to train/validate 
the custom CNN 

Fusion 
#1 

CNN 0.8611 0.9130 0.7692 0.8381 

Fusion 
#2 

CNN 0.9444 0.9565 0.9231 0.9397 

Best performance is highlighted. SVM and DTB classifiers are trained in the 
context of 5-fold nested CV, but CNN is trained while using 80%–20% for 
training and validation, respectively. 

Table 9 
Using unseen data samples of OASIS to test the generalization of our proposed 
techniques.  

Method ACC Sen SP GM 

(a): Combining shearlet-based descriptors with deep features to test the 
generalization of a classifier 

Fusion #2 SVM 0.8000 ± 0 0.7000 ± 0 0.9000 ± 0 0.7937 ± 0 

(b): Combining shearlet-based descriptors with deep features to test the 
generalization of the custom CNN 

Fusion #2 CNN 0.8000 0.7000 0.9000 0.7937 

Best models are determined based on the highest geometric mean that is 
computed in Table 8. 
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● Fusion #2: Alternatively, the best performing set of handcrafted 
descriptors with the best performing set of deep features are fused. 
This fusion is specific to an MRI brain scans dataset. In the case of the 
ADNI dataset, SFTA led to the highest classification performance, 
while GLCM textural features led to the highest classification per-
formance for the OASIS dataset. MobileNet deep features on the 
ADNI or OASIS datasets achieved the highest classification perfor-
mance. Thus, the total number of descriptors in this fusion is 1550 
and 1920 descriptors for the ADNI and OASIS datasets, respectively. 

In Table 6 and Table 8, we explore the combination of shearlet-based 
features with deep features when being fed to an SVM or DTB classifier 
and not using our custom 1D CNN fusion model. When we use all of our 
handcrafted descriptors with deep features in Fusion #1 to classify the 
ADNI dataset, an accuracy of 0.9050 is obtained with an SVM classifier. 
However, a higher classification accuracy of 0.9350 is achieved in 
Fusion #2 with an SVM model while selecting only one of our shearlet- 
based descriptors (i.e., SFTA) and one of our deep features based on 
MobileNet. Furthermore, the generalization of this high performing 
model is examined on an unseen dataset that was hidden from start to 
end (as shown in Table 7). As such, an accuracy of 64.50% is obtained 
with a corresponding sensitivity of 0.4800, a specificity of 0.8100, and a 
geometric mean of 0.6221. 

Similarly, our proposed combination is applied to classify the OASIS 
dataset. The highest classification accuracy of 90.00% is obtained while 
using a DTB with Fusion #1. However, classification accuracy of 92.78% 
is obtained by Fusion #2. Therefore, this model is selected to be tested 
on unseen data, and the accuracy on the unseen data is 80.00% with a 
corresponding sensitivity of 0.7000, a specificity of 0.9000, and a geo-
metric mean of 0.7937 (as shown in Table 9). 

In an attempt to reach a better classification model, we have built a 

custom CNN model (see Section 2.3). Such a model takes a feature vector 
as an input which will be further processed end to end to obtain a pre-
diction, and hence, does not require a separate classifier such as an SVM 
or DTB. This custom CNN model is trained from scratch while utilizing 
80% of the dataset for training and 20% for validation. The purpose of 
such a division is to select and monitor the hyperparameters and the 
model performance. As a result, a weight decay of 0.005 and a small 
learning rate of 0.001 are chosen. Our custom CNN model is optimized 
using adaptive moment estimation (Adam) [57] while being trained for 
200 epochs with mini-batches of size 10. 

Similar to before, our custom CNN model is examined on the 
concatenation of all shearlet-based descriptors with deep features in 
Fusion #1. Alternatively, our custom CNN model is examined while 
using only the best performing approach of each domain, i.e., one 
shearlet-based descriptor and one deep features. In Table 6, we observe 
that the validation geometric mean for classifying the ADNI dataset with 
the custom CNN for Fusion #2 is 0.9000. Therefore, we select Fusion #2 
as the best model and test this model on the unseen dataset, which leads 
to an accuracy of 70.00% with a corresponding sensitivity of 0.6000, a 
specificity of 0.8000, and a geometric mean of 0.6928, as shown in 
Table 7. Similarly, in Table 8, when we use only GLCM textural features 
that are computed in the shearlet domain combined with MobileNet 
deep features in Fusion #2 to train and validate our custom CNN model 
on the OASIS scans, we obtain a validation geometric mean of 0.9397. 
This model is then tested on the unseen data to examine its general-
ization. The achieved accuracy on the unseen data is 80.00%, with a 
corresponding sensitivity of 0.7000, a specificity of 0.9000, and a geo-
metric mean of 0.7937, as shown in Table 9. 

Our custom CNN provides higher classification results on the unseen 
dataset than using SVM or DTB. This is an indication that it is less sus-
ceptible to overfitting. There is a gap between the validation results and 

Table 10 
Comparative analysis of related work for AD Classification.  

Authors Training/Validation Protocol Separate 
Set 
for Testing 

Subjects 
for Training/Validation 

a(RD/ 
SbD)  

ACC Sen SP 

Reported performance of methods on the ADNI dataset for (sMCI vs. pMCI) classification 

Nanni et al. [9] 20-fold nested CV. × 134 sMCI + 76 pMCI SbD 0.671 0.355 0.865 
Salvatore et al. 

[10] 
20-fold nested CV. × 134 sMCI + 76 pMCI SbD 0.66 – – 

Feng et al. [16] 10-fold CV. × 160 sMCI + 120 pMCI SbD 0.7448 0.7111 0.7664 
Lian et al. [27] 2-fold CV. × 465 sMCI + 205 pMCI SbD 0.81 0.53 0.85 
Pan et al. [29] 5-fold CV. ✓ 134 sMCI + 76 pMCI SbD 0.62 – – 
Ours 80% of the data used for training and 20% used for validation. × 50 CN + 50 sMCI + 50 pMCI +

50 AD 
SbD 0.9000 0.9000 0.9000 

bOurs 80% of the data used for training and 20% used for validation. ✓ 50 CN + 50 sMCI + 50 pMCI +
50 AD 

SbD 0.7000 0.6000 0.8000 

Reported performance of methods on the OASIS dataset for (CN vs. AD) classification 

Jha et al. [15] 10-fold CV. × 98 CN + 28 ADs SbD 0.9006 0.9200 0.8778 
Wang et al. 

[25] 
49 subjects of each class were used for training, and the other 49 
subjects from each class were used for validation. 

× 98 CN + 28 AD + 70 AD 
(privately collected). 

SbD 0.9765 0.9796 0.9735 

Yagis et al. 
[24] 

5-fold CV. × 100 CN + 100 AD RD 0.925 – – 

Yagis et al. 
[24] 

5-fold CV. × 100 CN + 100 AD SbD 0.671 – – 

Hon and Khan 
[23] 

5-fold CV. × 100 CN + 100 AD RD 0.9625 – – 

Mendoza et al. 
[28] 

134 samples were used for training and 40 samples were used for 
validation. 

× 87 CN + 87 AD SbD 0.90 0.95 0.85 

Ours 80% of the data used for training and 20% used for validation. × 90 CN + 90 AD SbD 0.9444 0.9565 0.9231 
bOurs 80% of the data used for training and 20% used for validation. ✓ 90 CN + 90 AD SbD 0.8000 0.7000 0.9000  

a Random division (RD) of slices that potentially the same patient slices can appear in both training and testing datasets. Subject-based division (SbD) is more 
appropriate because slices of a patient could appear only in the training or testing split. 

b Our results reported in this raw are based on a separate set for testing, i.e., unseen MRI data. 
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the test results, especially on the ADNI datasets. As such, the validation 
accuracy and testing accuracy while using the ADNI dataset are 90.00% 
and 70.00%, respectively. However, as has been indicated in the dataset 
section, the ADNI MRI volumes that are used for training/validation are 
of the baseline visits of the patients, but our unseen data are of patients 
at different time-points. Thus, one can view our approach as effective in 
classifying patients’ AD scans that are not necessarily of the same time- 
point. 

4.4. Discussion 

Many studies have been developed for AD classification using 
traditional ML and DL. In Table 10, we provide a summary of several 
state-of-the-art classification performances of methods using the ADNI 
and OASIS datasets. Although we applied the classification task of (CN 
+ sMCI) vs. (pMCI + AD) while using the ADNI dataset, it can be 
compared with the classification task of (sMCI vs. pMCI) [53]. 

In particular, we compare the performance of our method on the 
ADNI dataset with results that were reported by Salvatore et al. [53]. We 
conducted our experiments for training a classifier while using the same 
patients’ data samples of the ADNI dataset as Salvatore et al. When using 
the baseline of the ADNI dataset, Salvatore et al. reported the highest 
accuracy of 85%, with a corresponding sensitivity of 0.83, and a speci-
ficity of 0.87. This performance was achieved while using (PCA + FDR) 
extracted from the MRI samples with neuropsychological data. How-
ever, when only PCA features were used, the classification accuracy, 
sensitivity, and specificity were 0.72, 0.69, and 0.75, respectively. The 
classification performance improved with the neuropsychological data, 
but the authors did not report the performance while using neuropsy-
chological data only. In comparison to Salvatore et al., our highest 
achieved accuracy was 93.50% while combining shearlet-based de-
scriptors and deep features that were extracted from the MRI samples, 
coupled with an SVM model. When we examined our combined de-
scriptors with a custom CNN model, it led to an accuracy of 90.00%. 
Additionally, we did not use neuropsychological data. It is also worth 
noting that we examined the generalization of our best-performing 
custom CNN model (i.e., achieved the highest geometric mean) on un-
seen data. Such a model led to an accuracy of 70.00%. 

Furthermore, we also compare with the performance of a study done 
by Hon and Khan [23]. Our experiments were conducted in a similar 
manner for training a classifier while using the same patients’ data 
samples of the OASIS dataset. Hon and Khan fine-tuned two CNN models 
while using each slice of an MRI as an independent example. When 
VGG16 was fine-tuned, they achieved an accuracy of 92.3%. However, a 
better classification accuracy of 96.25% was achieved while using 
Inception V4. Hon and Khan applied random split of slices, which might 
cause data leakage. 

Similarly, Yagis et al. [24] fine-tuned VGG-16 and ResNet-50 models. 
Each slice of an MRI was considered as an independent labeled example 
from the OASIS dataset. When the split of slices was done randomly, 
where the same patient’s slices can appear either in the training or the 
testing dataset, the highest reported classification accuracy was 92.5% 
while using ResNet-50. When ResNet-50 was trained in a subject-based 
split, where slices of a patient could appear only in the training or testing 
split exclusively, the highest classification accuracy was 67.1%. Hence, 
the accuracy drop of over 25% points gives an excellent indication of the 
importance of patient-based splitting in order to avoid data leakage. In 
contrast, our method achieves an accuracy of 94.4% with patient-based 
splitting. 

Unlike Yagis et al. [24], and Hon and Khan [23], we used each MRI 
sample of the OASIS data as a volume. Our highest classification accu-
racy was 92.78% while combining shearlet-based descriptors and deep 
features, coupled with an SVM model. Also, we examined our combined 
descriptors with a custom CNN model, which achieved an accuracy of 
94.44%. Furthermore, our custom CNN model, trained on the OASIS 
dataset that achieved the highest geometric mean on the validation set, 
was examined for its generalization on unseen data. The model accuracy 
was 80.00%. 

In Table 10, only the study by Pan et al. [29] used a separate set for 
testing the generalization of a model. 

When the OASIS dataset was used, some authors reported the per-
formance based on the random split of slices. This will lead to over- 
optimistic results, because of possible “information leakage.” As has 
been indicated earlier, Yagis et al. [24] demonstrated that a 
subject-based split is more appropriate, but a classifier can be expected 
to perform poorly. The studies by Mendoza et al. [28] and Wang et al. 
[25] selected a single slice to train and validate their respective models. 
Arguably, one slice might not be sufficient for predicting AD, since the 
practice in the hospitals by a radiologist is to use multiple slices [15]. In 
addition, Wang et al. utilized additional MRI samples of AD patients that 
were privately collected. The authors mentioned in their study that their 
eight-layer CNN model was empirically driven, but the CNN model was 
adjusted to maximize the classification performance on the validation 
split. Therefore, the chosen model and hyperparameters were biased to 
maximize the performance on the validation set. 

The main advantages of our proposed techniques can be summarized 
as: 

● A 3D shearlet transform is used to arrive at a compact feature rep-
resentation per MRI sample.  

● A 2.5D approach is used by stacking MRI slices in depth and, because 
of transfer learning, a compact and high-level semantic deep feature 
representation is obtained that leads to an effective classifier.  

● A shallow CNN model is proposed to classify AD using a combination 
of shearlet-based descriptors and deep features. Such a model out-
performed the simple concatenation approach while using a tradi-
tional ML classifier.  

● We train and validate our model with two data repositories. The 
generalization of the model is tested on unseen data, and the per-
formance is promising. Particularly, Fusion #2 led to the best clas-
sification results. 

Although the proposed system is not computationally intensive, the 
main drawback of this work is the requirement for a couple of steps to 
ensure building a model that is less susceptible to overfitting. 

5. Conclusion and future work 

Although a cure for AD does not exist, the drugs in a trial show that 
patients who are diagnosed early benefit the most [58]. Thus, a robust 
technique for classification of AD must be advanced. In this paper, we 
have proposed a combination of 3D shearlet-based descriptors with deep 
features for the classification of AD. We rigorously evaluate our pro-
posed technique utilizing a commonly used training and validation 
protocol. The performance of our proposed technique is highly ranked in 
comparison with previously published studies for AD classification. 
Most importantly, we further verify the capability of our technique to 
generalize on new data samples; i.e., a separate testing set of MRI 
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volumes is utilized. Particularly, we showed that our customized CNN 
model is less susceptible to overfitting and can effectively generalize on 
unseen MRI data. In the future, we plan to examine our approach on 
other datasets with a similar nature of complexity; for example, the 
Parkinson’s Progression Markers Initiative (PPMI) data repository [59]. 
Although our techniques are examined for the classification task, it 
would be interesting to extend our shearlet descriptors and DL strategies 
to segmentation tasks. For example, the multimodal Brain Tumor Image 
Segmentation Benchmark (BRATS)6 is worth exploring. 
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Appendix A 

In Section 2.1, we described the process of reducing the shearlet sub- 
bands to only one averaged sub-band for each MRI slice. A set of de-
scriptors from each slice are extract. For each texture-based method, all 
sets of descriptors of all slices are concatenated to form the feature 
vector of an MRI sample. In Fig. 4, an example of different texture de-
scriptors in the 3D shearlet transform of a CN and an AD sample is 
shown. In this example, the descriptor values are showing only subtle 
differences except for the LOSIB descriptor. 

Fig. 4. Descriptors extracted from one CN and another from AD MRI sample using the OASIS dataset.  

6 The BRATS benchmark can be accessed via http://www.braintumorsegm 
entation.org/. 
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Appendix B 

The details of our custom CNN activations and parameters are pro-
vided in this appendix (as shown in Table 11). 

Appendix C 

In this appendix, we provide the performance of each fold of our 
best-performing technique in Tables 12–15. Also, the training/valida-
tion loss plot of our customized CNN model is provided in Fig. 5. 

Table 11 
Our custom 1D CNN activations and parameters details.  

Name Activations Parameters 

Combined Input 1 × 1920 × 1 – 
Conv_1 1 × 1920 × 8 Weights 1 × 7 × 1 × 8 

Bias 1 × 1 × 8 
Batchnorm_1 1 × 1920 × 8 Offset 1 × 1 × 8 

Scale 1 × 1 × 8 
ReLU_1 1 × 1920 × 8 – 
MaxPool_1 1 × 960 × 8 – 
Conv_2 1 × 960 × 16 Weights 1 × 7 × 8 × 16 

Bias 1 × 1 × 16 
Batchnorm_2 1 × 960 × 16 Offset 1 × 1 × 16 

Scale 1 × 1 × 16 
ReLU_2 1 × 960 × 16 – 
MaxPool_2 1 × 480 × 16 – 
Conv_3 1 × 480 × 32 Weights 1 × 7 × 16 × 32 

Bias 1 × 1 × 32 
Batchnorm_3 1 × 480 × 32 Offset 1 × 1 × 32 

Scale 1 × 1 × 32 
ReLU_3 1 × 480 × 32 – 
MaxPool_3 1 × 240 × 32 – 
Conv_4 1 × 240 × 64 Weights 1 × 7 × 32 × 64 

Bias 1 × 1 × 64 
Batchnorm_4 1 × 240 × 64 Offset 1 × 1 × 64 

Scale 1 × 1 × 64 
ReLU_4 1 × 240 × 64 – 
FC_1 1 × 1 × 120 Weights 120 × 15360 

Bias 120 × 1 
ReLU_5 1 × 1 × 120 – 
Batchnorm_5 1 × 1 × 120 Offset 1 × 1 × 120 

Scale 1 × 1 × 120 
FC_2 1 × 1 × 120 Weights 120 × 120 

Bias 120 × 1 
ReLU_6 1 × 1 × 120 – 
Batchnorm_6 1 × 1 × 120 Offset 1 × 1 × 120 

Scale 1 × 1 × 120 
FC_3 1 × 1 × 120 Weights 120 × 120 

Bias 120 × 1 
ReLU_7 1 × 1 × 120 – 
Batchnorm_7 1 × 1 × 120 Offset 1 × 1 × 120 

Scale 1 × 1 × 120 
FC_4 1 × 1 × 2 Weights 2 × 120 

Bias 2 × 1 
SoftMax 1 × 1 × 2 –  

Table 13 
The performance of each fold while using unseen ADNI data to test the SVM 
model generalization that obtained in Table 12.  

Fold No. ACC Sen SP GM 

1 0.7000 0.6000 0.8000 0.6928 
2 0.6250 0.4500 0.8000 0.6000 
3 0.6000 0.4500 0.7500 0.5809 
4 0.6500 0.4500 0.8500 0.6185 
5 0.6500 0.4500 0.8500 0.6185  

Table 14 
The performance of each fold while training/validating an SVM model in the 
context of nested 5-fold CV with Fusion #2 descriptors extracted from the 
OASIS data.  

Fold No. ACC Sen SP GM 

1 0.9444 0.9444 0.9444 0.9444 
2 0.9444 0.8889 1.0000 0.9428 
3 0.9722 0.9444 1.0000 0.9718 
4 0.9444 0.9444 0.9444 0.9444 
5 0.8333 0.8333 0.8333 0.8333  

Table 15 
The performance of each fold while using unseen OASIS data to test the SVM 
model generalization that obtained in Table 14.  

Fold No. ACC Sen SP GM 

1 0.8000 0.7000 0.9000 0.7937 
2 0.8000 0.7000 0.9000 0.7937 
3 0.8000 0.7000 0.9000 0.7937 
4 0.8000 0.7000 0.9000 0.7937 
5 0.8000 0.7000 0.9000 0.7937  

Table 12 
The performance of each fold while training/validating an SVM model in the 
context of nested 5-fold CV with Fusion #2 descriptors extracted from the ADNI 
data.  

Fold No. ACC Sen SP GM 

1 0.9000 0.9000 0.9000 0.9000 
2 0.9250 0.9000 0.9500 0.9247 
3 0.9500 1.0000 0.9000 0.9487 
4 0.9750 0.9500 1.0000 0.9747 
5 0.9250 0.9500 0.9000 0.9247  
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Appendix D 

In this appendix, a breakdown of the required time for each step in 
our proposed system is provided. Table 16 shows the required time to 
build the whole system using 200 MRI samples from the ADNI data re-
pository. It only requires ≈ 37 min for feature extraction and training/ 
validating a custom CNN while using Fusion #2 descriptors. Similarly, 
Table 17 shows the required time for building the whole system using 
180 MRI samples from the OASIS data repository. While using Fusion #2 
descriptors for training/validating a custom CNN, it only requires ≈ 10 
min. 

All experiments were conducted on a computer with an Intel Core i7- 
9700 3.00 GHz CPU, and 8 GB NVIDIA GeForce RTX 2080 graphics card. 
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